Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jallcom

Structure and properties relationships of beta-Al₂O₃ electrolyte materials

Chengfei Zhu*, Jinhua Xue

College of Materials Science & Engineering, Nanjing University of Technology, Nanjing 210009, China

ARTICLE INFO

Article history: Received 27 September 2011 Received in revised form 7 December 2011 Accepted 16 December 2011 Available online 27 December 2011

Keywords: Beta-alumina Solid electrolyte Aluminum-oxide polyhedron structure Sodium-sulfur batteries

ABSTRACT

Beta-Al₂O₃ electrolyte materials were synthesized by solid-state reaction method in this paper. The effect of different stabilizers on the β "-phase content of the beta-Al₂O₃ electrolyte and the structures of aluminum-oxide polyhedron were investigated by X-ray diffraction technology (XRD) and ²⁷Al MAS NMR, and the relationship between the β " phase content and the amounts ratio of octahedron and tetrahedron ($A_{Al(VI)}/A_{Al(IV)}$) was summarized. The results showed that the β " phase was stable at high temperatures and the β " phase content increased with the temperature increasing by the addition of the stabilizers. Meanwhile, $\delta_{Al(VI)}$ and $\delta_{Al(VI)}$ moved towards down field, and $A_{Al(VI)}/A_{Al(IV)}$ decreased with the β " phase content increasing. The Mg²⁺ stabilizer was better to improve the symmetry of Al(VI) than the Li⁺ stabilizer.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The polycrystalline beta-Al₂O₃, one of the well-known solid electrolyte materials used in sodium-sulfur batteries and sodium-nickel chloride batteries [1,2], is normally a nonstoichiometric compound and has two similar crystalline phases of β "- and β -phases [3]. The β "-phases are more desirable since it has 3-4 times higher ionic conductivity than that of β -phase. Therefore, the different structures of beta-Al₂O₃ have a significant effect on its performance. In published works preference is generally given to the β "-Al₂O₃ phase stabilized with Li⁺, Mg²⁺ or with a mixture of these two oxides [4,5]. And the approximate relative amounts of β " and B-phases are appreciated from their own characteristic diffraction peaks respectively. However, few researches had been done in terms of the effect of the stabilizers on the aluminum-oxide polyhedron structure and the relationship between the relative content of two phases of the aluminum-oxide polyhedron structure. The technique of ²⁷Al magic-angle spinning (MAS) NMR spectroscopy has become an important research and analytical tool in the characterization of a variety of polycrystalline and amorphous materials since its invention in 1945 [6]. In the recent report of Chen et al. [7], the coordination states of aluminum species in calcined HZSM-5 zeolites had been investigated using ²⁷Al MAS and 2D MQMAS methods. Wang et al. [8,9] studied the aluminum-oxide stereo polyhedron structures by ²⁷Al MAS NMR and SEM in fly ashes treated

0925-8388/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.12.080

by mechanical grinding. The present work was conducted in order to discuss the effect of stabilizers and phase composition on the aluminum-oxide polyhedron structure. This made a theoretical basis for the preparation of beta-Al₂O₃.

2. Experimental

Beta-Al₂O₃ was fabricated from powder mixtures of high-purity α -Al₂O₃, reagent-grade Na₂C₂O₄, Li₂CO₃, Mg(OH)₂, and the compositions. And mass ration for this study were summarized in Table 1. The additives, such as LiAl₅O₈, Li₂CO₃ and Mg(OH)₂, were utilized as the stabilizing sources of beta-Al₂O₃. The stabilizer LiAl₅O₈ was prepared by mixing appropriate amounts of dried Li₂CO₃, α-Al₂O₃ and calcining the mixture at 1523 K for 2 h. The pure LiAl₅O₈ was detected in the resulting powder by X-ray diffraction. The 1#-5# compositions in Table 1 were ball-milled with ethanol for 10 h and dried at 353 K, then calcined at 1573 K for 2 h. These products were the precursor powders of beta-Al₂O₃. The Na₂O·5Al₂O₃ was the precursor powder without any stabilizer. The precursor powders were ball-milled with ethanol for another 10 h and then dried. Some polyvinyl alcohol was added as a binder. Pellet specimens with a diameter of 20 mm were uniaxially pressed at about 100 MPa and then isostatically pressed at 300 MPa. The green ceramics were covered with powders of the same compositions and fired at 1873 K for several minutes. Meanwhile, the stabilizing effect of LiAl₅O₈ and Li₂CO₃ respectively on Na2O·5Al2O3 were also investigated, which can be seen from 6# and 7# compositions in Table 1.

The phase composition analysis of the precursor powders and sinters was carried out on the Dmax/rB X diffraction analyzer using CuK α radiation over the range of 5–80° (2 θ). The scanning speed of the gonimeter was 5° (2 θ) per minute. Solid-state ²⁷Al MAS NMR experiments of the precursor powders and sinters were performed at a resonance frequency of 104.26 MHz using a high magnetic field (9.4T) on a Bruker AVANCE-400 spectrometer at room temperature. The delay time was 0.5 s and spinning rate was 8 kHz. The relative amounts of Al(IV)(A_{Al(VI)}) and Al(VI)(A_{Al(VI)}) were calculated from the area intensity ration of the peaks corresponding to Al(IV) and Al(VI), respectively. The sinter samples for the test of NMR were crushed and passed through 270 mesh sieve.

^{*} Corresponding author. Tel.: +86 25 83172117. *E-mail address:* zhucf@njut.edu.cn (C. Zhu).

Table 1 Compositions c	of beta-Al ₂ O ₃ solid electro	olyte.	
No	1#	2#	

No.	1#	2#	3#	4#	5#	6#	7#
Starting materials Stabilizer Composition content, wt%	Na ₂ C ₂ O ₄ Al ₂ O ₃ -	$\begin{array}{l} Na_2C_2O_4Al_2O_3\\ LiAl_5O_8 \end{array}$	Na ₂ C ₂ O ₄ Al ₂ O ₃ Li ₂ CO ₃	$Na_2C_2O_4Al_2O_3$ Mg(OH) ₂	Na ₂ C ₂ O ₄ Al ₂ O ₃ LiAl ₅ O ₈ Mg(OH) ₂	Na ₂ O·5Al ₂ O ₃ LiAl ₅ O ₈	Na ₂ O·5Al ₂ O ₃ Li ₂ CO ₃
Na ₂ O	10.84	9.50	9.50	9.50	9.50	9.50	9.50
Li ₂ O MgO	-	0.70	-	- 5.0	2.00	0.70	0.70
Al_2O_3	89.16	89.80	89.80	89.80	87.80	89.80	89.80

3. Results and discussion

3.1. XRD and ²⁷Al MAS NMR spectroscopy analysis of the precursor powders

It was shown in Fig. 1 that all samples contained β "- and β phases in different calcinations at 1573 K. Since β "- and β -phases have similar X-ray diffraction peaks, the relative amounts of β "and β -Al₂O₃ in each sample were determined from the integrated intensities of the $(017)\beta$ - and $(0111)\beta$ "-diffraction peaks using the method described by Youngblood et al. [10]. As can be seen from Fig. 1, the neighboring peaks occurred at 33.4° and 34.6° of 2θ , respectively. So the relative amounts of β "-phase of the 1#–5# precursor powders were 81 wt%, 68 wt%, 56 wt%, 59 wt% and 62 wt%, respectively. This indicated that LiAl₅O₈-stabilized system could produce more β "-phase in comparison with the Li₂CO₃-stabilized compositions. It had been reported that LiAl₅O₈ had more volume than Li₂CO₃ [11], therefore LiAl₅O₈ could induce more uniform distribution of Li⁺ ions and increase the fractions of B"-phase during the preparation process. Obviously, the stabilization effect in the LiAl₅O₈-Mg(OH)₂-stabilized system was better than that of the Mg(OH)₂-stabilzed system, but worse than that of the LiAl₅O₈stabilzed system. In comparison with the Na₂O·5Al₂O₃ powder, no more β "-phase fractions had been formed in the stabilized system. It was considered that the effect of stabilizers on the β "-phase formation would occur at the higher temperature.

The β " and β -phases in beta-Al₂O₃ have basically close packed structures with 2 and 3 spinel blocks [12], respectively. And the arrangement of Al³⁺ and O²⁻ ions in the unit crystals of β " and β phases is same as that of MgAl₂O₄ [13]. Generally, the tetrahedron coordinating aluminum structure (Al(IV)) has a high chemical shift, while the octahedron coordinating aluminum structure (Al(VI)) has a low chemical shift [14]. It was shown that beta-Al₂O₃ had a peak at 50 ppm assigned to Al(IV) and a peak at -6 ppm assigned to Al(VI) in Fig. 2. Since both β " and β -phases existed in the precursor powders, the ²⁷Al MAS NMR spectra of precursor powders

Fig. 1. XRD patterns of precursor powders with different stabilizers.

Fig. 2. ²⁷Al MAS NMR spectra of precursor powders with different stabilizers.

displayed asymmetrical signals and the widening of the Al(IV) and Al(VI) peaks, especially the obvious division of Al(VI) spectra. In comparison with the Na₂O·5Al₂O₃ powder, the symmetry of Al(VI) peaks was improved in the precursor powders stabilized with the LiAl₅O₈ and Li₂CO₃ respectively. In the Mg²⁺-stabilized system and Mg²⁺-Li⁺-stabilized system, the peaks of Al(IV) and Al(VI) became more pronounced and the division of the Al(VI) peaks mostly disappeared. It was demonstrated that the Mg²⁺ stabilizer was more beneficial to the environmental improvement of the aluminum-oxide polyhedron structure than the Li⁺ stabilizer, which was in good agreement with the uniform microstructure in beta-Al₂O₃ stabilized with Mg²⁺ ionic.

Table 2 presented the chemical shift of Al(IV) ($\delta_{Al(VI)}$), Al(VI) ($\delta_{Al(VI)}$), the amounts ratio of Al(IV), Al(VI) ($A_{Al(VI)}$)/ $A_{Al(IV)}$) in different precursor powders. It was found that in comparison with Na₂O·5Al₂O₃, $\delta_{Al(IV)}$ and $\delta_{Al(VI)}$ of precursor powders with stabilizers moved towards down field obviously. It can be explained properly by the decrease of Al extranuclear electron density from the substitution effect of stabilizers. As shown in Table 2, $A_{Al(VI)}/A_{Al(IV)}$ in the 1# precursor powder was larger than that in the 2#, 3#, but smaller than that in 4#, 5#. In comparison with the ideal composition of $\beta^{"}$ -Al₂O₃ [15], the compositions of beta-Al₂O₃ in this experiment had extra Na⁺ ions. Stabilization of $\beta^{"}$ -phase was basically the substitution of Al³⁺ ions by the cations of stabilizers to

Table 2	
The chemical shift of the Al–O structure of the precursor powders.	

Al-ONo.	$\delta_{\rm Al(IV)} (\rm ppm)$	$\delta_{\rm Al(VI)} (\rm ppm)$	$A_{\rm Al(VI)}/A_{\rm Al(IV)}$	β" phase content (wt%)
1#	46.7	-9.1	1.74	81
2#	51.1	-6.7	1.48	68
3#	48.9	-6.2	1.54	56
4#	50.1	-6.5	1.87	59
5#	50.4	-6.5	1.83	62

Fig. 3. XRD patterns of sinters with different stabilizers.

compensate extra Na⁺ ions. It had been reported that the compensating Li⁺ ions generally substituted the octahedral Al³⁺ ions, and Mg²⁺ ions substituted tetrahedral Al³⁺ in the spinel blocks [11]. Hence, the $A_{Al(VI)}/A_{Al(IV)}$ decreased in the Li⁺-stabilized system, but increased a little in the Mg²⁺-stabilized system.

3.2. XRD and ²⁷Al MAS NMR spectroscopy analysis of the sinters

Fig. 3 presented XRD patterns of sinters manufactured by different technologies. It was found that the characteristic peak of β -phase was particularly obvious in the 1# sinter, and the β "-phase fractions were only 5 wt%, which were much smaller than that in the 1# precursor powder. But in the 2#–7# sinters, the characteristic peak of β -phase was very weak, the β "-phase fractions were up to 93 wt%, 88 wt%, 91 wt%, 96 wt%, 98 wt%, 98 wt%. As expected, the β "-phase fractions of the sinters were much more than that of the precursor powders, and the sinters with more pure β "-phase fractions. Moreover, the formation of β "-phase occurred more easily in the materials with the double stabilizers than that with single stabilizer.

According to the XRD patterns of 1#, 6#, and 7# sinters, the transformation of β " to β -phase was held effectively back by the addition of stabilizers. In addition, the formation of β " phase could be easier by adding stabilizers in Na₂O·5Al₂O₃ than adding stabilizers directly in the starting materials.

Fig. 4 showed ²⁷Al MAS NMR spectra of beta-Al₂O₃ sinters. An unknown peak occurred at 62 ppm in the 1# sinters, which was considered to be related to the high β phase fractions. In β -Al₂O₃ crystals, Al³⁺ ions left the original equilibrium position to become the interval Al³⁺ ions in the conducting plane layer due to the extra Na⁺ ions, and the interval O²⁻ ions of the crystal structure provided the tetrahedral coordination for Al³⁺ ions and compensated the extra Na⁺ ions [16]. Therefore, a new Al(IV) spectrum occurred in the sinter when the β phase became the major phase. Compared to the 1# sinter, $\delta_{Al(IV)}$ and $\delta_{Al(VI)}$ in different sinters with stabilizers moved towards down field. But the migration rate in the sinters was smaller than that in the precursor powders. It was considered that $\delta_{Al(IV)}$ and $\delta_{Al(VI)}$ in the sinters became close to each other due to the uniform of beta-Al₂O₃ with the temperature increasing.

As can be found in Fig. 4, in comparison with the Na₂O·5Al₂O₃ sinter, the symmetry of Al(VI) peaks was improved in the sinters stabilized with LiAl₅O₈ and Li₂CO₃ respectively. In the 3# and 4# sinters, the peaks of Al(IV) and Al(VI) became more pronounced and the division of the Al(VI) peaks mostly disappeared. It was demonstrated that the Mg²⁺ stabilizer was beneficial to the environmental improvement to the aluminum-oxide polyhedron structure. Table 3 showed that the $A_{Al(VI)}/A_{Al(IV)}$ of sinters further decreased in

Fig. 4. ²⁷Al MAS NMR spectra of beta-Al₂O₃ sinters with different stabilizers.

Table 3The chemical shift of the Al–O structure of the sinters.

Al-ONo.	$\delta_{\rm AI(IV)}$ (ppm)	$\delta_{\rm AI(VI)}(\rm ppm)$	$A_{\rm Al(VI)}/A_{\rm Al(IV)}$	β" phase content (wt%)
1#	49.1	-7.0	1.10	5
2#	50.2	-6.6	1.32	93
3#	49.9	-6.8	1.39	88
4#	51.3	-6.5	1.62	91
5#	51.2	-6.7	1.48	96
6#	50.1	-6.6	1.28	98
7#	49.5	-6.8	1.28	98

comparison with the precursor powders, and the intensity of Al(IV) spectra was strengthened clearly. It can be concluded that the decrease of the $A_{Al(VI)}/A_{Al(IV)}$ was resulted from the transformation of β phase to β " phase according to the change of the β " phase fractions both in precursor powders and sinters.

According to Tables 2 and 3, the relationship between the β " phase fractions and the $A_{Al(VI)}/A_{Al(IV)}$ was shown in Fig. 5 in Li⁺-stabilized and Mg²⁺-stabilied systems, respectively. It was obvious that the $A_{Al(VI)}/A_{Al(IV)}$ gradually decreased with the increase of the β " phase fractions after adding the stabilizers, and the two parameters displayed the linear relationship in these two different systems. Therefore, the β " phase fractions in the Li⁺-stabilized or

Fig. 5. The value of $A_{Al(VI)}/A_{Al(IV)}$ vs. β " phase content.

Mg²⁺-stabilized system can be deduced from the $A_{AI(VI)}/A_{AI(IV)}$. It provided a new calculation method for the β " phase fractions.

4. Conclusions

- (1) The β " phase of beta-Al₂O₃ was stable in high temperature and the β " phase content increased with the sintering temperature rising by the addition of the stabilizers.
- (2) $\delta_{AI(VI)}$ and $\delta_{AI(IV)}$ of beta-Al₂O₃ moved towards down field in different systems with different stabilizers. Li⁺ and Mg²⁺ ions substituted the octahedron and tetrahedral Al³⁺ ions in the spinel blocks respectively, and Mg²⁺ stabilizer was more benefit to improve the symmetry of Al(VI) of the beta-Al₂O₃ than Li⁺ stabilizer.
- (3) The amounts ratio of octahedron and tetrahedron $(A_{Al(VI)}/A_{Al(IV)})$ of beta-Al₂O₃ decreased with the β " phase content increasing.

References

- [1] X. Lu, G. Xia, J.P. Lemmon, Z. Yang, J. Power Sources 195 (2010) 2431.
- [2] Z. Wen, J. Cao, Z. Gu, Solid State Ionics 179 (2008) 1697.
- [3] J. Bera, J. Mater. Sci. Lett. 12 (1993) 27.
- [4] K. Chen, Z. Lin, Z. Fan, J. Inorg. Mater. 12 (1997) 725.
- [5] F. Harbach, J. Mater. Sci. 18 (1983) 2437.
- [6] J. Skibsted, H.J. Jakobsen, C. Hall, Adv. Cem. Based Mat. 7 (1998) 57.
- [7] L. Ch, F. Deng, Z.H. Ye, Acta Phys-Chim. Sin. 18 (2002) 786.
- [8] X.J. Wang, Chinese J. Chin. Magn. Reson. 21 (2004) 199.
- [9] X.J. Wang, N.R. Yang, H.Q. Zhou, J. Chin. Ceram. Soc. 31 (2003) 187.
 [10] G. Youngblood, A.V. Virkar, W.R. cannon, Ceram. Bull. 56 (1977) 206.
- [11] J.H. Park, K.H. Kim, S.K. Lim, J. Mater. Sci. 33 (1998) 5671.
- [12] D.D. Lee, J.H. Kim, Y.H. Kim, J. Mater. Sci. 25 (1990) 2897.
- [13] P.W. Haycock, W. Hayes, R.C. Ward, Solid State Ionics 80 (1995) 53.
- [14] N. Z, N. K, R.G. H, Dent. Mater. 25 (2009) 290.
- [15] Z. Wen, Z. Gu, X. Xu, J. Cao, F. Zhang, Z. Lin, J. Power Sources 184 (2008) 641.
- [16] M.L. Sh, Solid Electrolytes, Chongqing Scientific and Technological Literature Publishing House, Chongqing, China, 1982.